WRITTEN HOMEWORK \#6, DUE FEB 17, 2010

(1) (Chapter 17.2, \#45)
(a) Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^{2}+y^{2}=1$.
(b) Is this also true for a force field $\mathbf{F}(\mathbf{x})=k \mathbf{x}$, where k is a constant and $\mathbf{x}=\langle x, y\rangle$?
(2) (Chapter 17.3, \#14) Let $\mathbf{F}(x, y)=\left\langle\frac{y^{2}}{1+x^{2}}, 2 y \arctan x\right\rangle$, and let C be parameterized by $\mathbf{r}(t)=\left\langle t^{2}, 2 t\right\rangle, 0 \leq t \leq 1$.
(a) Find a function f such that $\mathbf{F}=\nabla f$, and
(b) use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along C.
(3) For each of the following five regions D, draw a sketch of each region, and identify whether they are connected and/or simply-connected.
(a) $\{(x, y) \mid y \neq 0\}$; ie, \mathbb{R}^{2} with the x axis removed.
(b) $1 \leq x^{2}+y^{2} \leq 4, y \geq 0$.
(c) $x \geq 4$ or $x<3$.
(d) The region D given by polar inequalities $r \geq 0, \pi / 4 \leq \theta \leq 3 \pi / 4$.
(e) $\{(x, y) \mid(x, y) \neq(x, 0), x<0\}$; ie, \mathbb{R}^{2} with the negative x axis removed.
(4) Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

This vector field appears in a Webwork homework assignment, and in that assignment you showed it was not conservative on \mathbb{R}^{2} with the origin removed. Let D be the region $\{(x, y) \mid(x, y) \neq(x, 0), x<0\}$; ie, \mathbb{R}^{2} with the negative x axis removed (the same region as part (e) of the previous problem).
(a) Explain why \mathbf{F} is conservative on D.
(b) For (x, y) in D, let $x=r \cos \theta, y=r \sin \theta$, where r, θ are polar coordinates, with θ restricted by $-\pi<\theta<\pi$. (Notice that $\theta=\pi$ corresponds to the negative x-axis, which is not in D.) Suppose $f(x, y)$ is a potential function for \mathbf{F}, which satisfies $f(1,0)=0$. Show that $f(x, y)=\theta$ by calculating the line integral of a path from $(1,0)$ to (x, y). (Hint: pick a path which goes from $(1,0)$ to $(r, 0)$, and then goes to (x, y) by traveling along the circle of radius r.)
(5) (Chapter 17.4, \#12) Let $\mathbf{F}(x, y)=\left\langle y^{2} \cos x, x^{2}+2 y \sin x\right\rangle$, and let C be the triangle from $(0,0)$ to $(2,6)$ to $(2,0)$ to $(0,0)$. (That is, the orientation of C is given by this traversal of the listed vertices.) Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(6) (Chapter 17.4, \#21) (a) If C is the line segment connecting the starting point $\left(x_{1}, y_{1}\right)$ to end point $\left(x_{2}, y_{2}\right)$, show that

$$
\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}
$$

(b) If the vertices of a polygon, in counterclockwise order, are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, show that the area of the polygon is

$$
A=\frac{1}{2}\left(\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\ldots+\left(x_{n-1} y n-x_{n} y_{n-1}\right)+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right) .
$$

(c) Find the area of the quadrilateral with vertices $(0,0),(2,1),(1,3),(-1,1)$. (The textbook gives a pentagon with one additional vertex, but the pentagon really is a quadrilateral because three of the listed vertices are collinear.)

