WRITTEN HOMEWORK #6, DUE FEB 17, 2010

(1) (Chapter 17.2, #45)

(a) Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^2 + y^2 = 1$.

(b) Is this also true for a force field $\mathbf{F}(\mathbf{x}) = k\mathbf{x}$, where k is a constant and $\mathbf{x} = \langle x, y \rangle$?

- (2) (Chapter 17.3, #14) Let $\mathbf{F}(x,y) = \langle \frac{y^2}{1+x^2}, 2y \arctan x \rangle$, and let C be parameterized by $\mathbf{r}(t) = \langle t^2, 2t \rangle, 0 \le t \le 1$.
 - (a) Find a function f such that $\mathbf{F} = \nabla f$, and
 - (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along C.
- (3) For each of the following five regions D, draw a sketch of each region, and identify whether they are connected and/or simply-connected.
 - (a) $\{(x, y) | y \neq 0\}$; ie, \mathbb{R}^2 with the x axis removed. (b) $1 \le x^2 + y^2 \le 4, y \ge 0$.

 - (c) $x \ge 4$ or x < 3.
 - (d) The region D given by polar inequalities $r \ge 0, \pi/4 \le \theta \le 3\pi/4$.
 - (e) $\{(x,y)|(x,y) \neq (x,0), x < 0\}$; ie, \mathbb{R}^2 with the negative x axis removed.
- (4) Let \mathbf{F} be the vector field

$$\mathbf{F}(x,y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle.$$

This vector field appears in a Webwork homework assignment, and in that assignment you showed it was not conservative on \mathbb{R}^2 with the origin removed. Let D be the region $\{(x,y)|(x,y) \neq (x,0), x < 0\}$; ie, \mathbb{R}^2 with the negative x axis removed (the same region as part (e) of the previous problem).

(a) Explain why \mathbf{F} is conservative on D.

(b) For (x, y) in D, let $x = r \cos \theta$, $y = r \sin \theta$, where r, θ are polar coordinates, with θ restricted by $-\pi < \theta < \pi$. (Notice that $\theta = \pi$ corresponds to the negative x-axis, which is not in D.) Suppose f(x, y) is a potential function for **F**, which satisfies f(1,0) = 0. Show that $f(x,y) = \theta$ by calculating the line integral of a path from (1,0) to (x,y). (Hint: pick a path which goes from (1,0) to (r,0), and then goes to (x, y) by traveling along the circle of radius r.)

- (5) (Chapter 17.4, #12) Let $\mathbf{F}(x, y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$, and let C be the triangle from (0,0) to (2,6) to (2,0) to (0,0). (That is, the orientation of C is given by this traversal of the listed vertices.) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- (6) (Chapter 17.4, #21) (a) If C is the line segment connecting the starting point (x_1, y_1) to end point (x_2, y_2) , show that

$$\int_C x \, dy - y \, dx = x_1 y_2 - x_2 y_1.$$

(b) If the vertices of a polygon, in counterclockwise order, are $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),$ show that the area of the polygon is

$$A = \frac{1}{2}((x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)).$$

(c) Find the area of the quadrilateral with vertices (0,0), (2,1), (1,3), (-1,1). (The textbook gives a pentagon with one additional vertex, but the pentagon really is a quadrilateral because three of the listed vertices are collinear.)